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Trace fossil assemblages from the latest Paleocene to the earliest Eocene were significantly affected by the
environmental perturbation of the Paleocene–Eocene Thermal Maximum (PETM). High-resolution ichnolo-
gical analysis shows well marked different ichnological features pre-, syn-, and post-event. A well developed
normal, tiered burrowing community is present in the sediments below the PETM, indicating oxic conditions
and normal benthic food availability. During the PETM the record of trace fossil producers disappeared
gradually but rapidly, reflecting the global increase in temperature, and the concentration of benthic food in
the very shallow surface layer and, probably, the local depletion of oxygen within the sediments, although
probably not true anoxia. The environmental perturbation significantly affected the whole benthic habitat, as
shown by the correspondence with themain phase of the benthic foraminiferal extinction. After the PETM, the
normal, tiered burrowing community recovered gradually and slowly, in a delayed return to pre-PETM
environmental conditions. The changes in the trace fossil assemblage thus document the impact of the PETM
on the macrobenthic community, a decline in oxygen levels during the PETM in a globally perturbed habitat
due to global warming and the similarities and differences in the response of micro- and macrobenthic
communities to global phenomena. Thus, ichnological analysis reveals as a very useful additional tool to
understanding atmosphere–ocean dynamic during PETM and a potential way in future climate research.
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1. Introduction

The Paleocene–Eocene Thermal Maximum (PETM) corresponds to
a globally warm episode of Earth's history, directly following the
Paleocene–Eocene boundary (around 55.5 Ma), and that has been
studied extensively since its discovery in 1991 (see Sluijs et al., 2007
for a recent review). Originally, this event was placed within the latest
Paleocene and named the Late Paleocene Thermal Maximum (LPTM).
The definition of the Paleocene/Eocene boundary was changed,
however, placing this boundary at the base of the PTEM, so that the
maximum temperatures were registered after the Paleocene/Eocene
boundary. This event is thus also called the Initial Eocene Thermal
Maximum (IETM) (Sluijs et al., 2007).

The episode was geologically brief (~170 kyr, see below), and the
analysis of marine and terrestrial proxies revealed that global
temperatures increased by ~5 °C, although in some regions tempera-
tures increased by up to 8 °C (e.g., Wing et al., 2005; Zachos et al.,
2006).
Associated with the rapid global warming, a massive perturbation
of the global carbon cycle occurred, as indicated by the occurrence of a
negative carbon isotope excursion (CIE) in carbonate and organic
matter in terrestrial and marine records. The size of the negative
excursion was originally through to be including a 2.5–3‰, as seen in
many carbonate records, although its magnitude was 5–6‰ in organic
records (Bowen and Bowen, 2008 and references therein). More
recently, the globally averaged value of the negative carbon isotope
excursion is estimated at 3.5 to 5.0‰ (e.g., Handley et al., 2008;
McCarren et al., 2008).

The calcite compensation depth (CCD) shoaled rapidly (by more
than 2 km in the South Atlantic Ocean) and recovered gradually
(Zachos et al., 2005). Most researchers agree that the PETM global
warmingwas caused bymassive input of isotopically light carbon into
the ocean–atmosphere system, leading to the massive perturbation of
the carbon cycle, but the source of the added carbon is not yet
determined (see overview in Sluijs et al., 2007). The carbon injection
had an estimated duration of ≤20 kyr (Röhl et al., 2007), and the
PETM lasted for about 105 years, with values ranging between 120
and 170 kyr (see Abdul Aziz et al., 2008).

Major biotic changes in terrestrial, shallow-marine and deep-
marine communities occurred during this global paleoenvironmental
perturbation, including migrations to higher latitudes, evolutionary
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radiations and extinctions (see Sluijs et al., 2007 and Thomas, 2007 for
recent reviews). Marine communities underwent significant changes
during the PETM, showing variable responses, with a clear differen-
tiation between planktic and benthic realms (Bowen et al., 2006;
Sluijs et al., 2007). In the planktic realm, organic-walled dinoflagel-
lates show a global acme of the low-latitude genus Apectodinium (e.g.,
Crouch et al., 2001, 2003), which migrated even into the Arctic Ocean
(Sluijs et al., 2006), while planktic foraminifera and calcareous nanno-
fossils show comparatively minor changes, including migrations and
diversification of the foraminifera genera Morozovella and Acarinina
(Canudo and Molina, 1992; Kelly et al., 1996, 1998; Arenillas and
Molina, 2000) and geographic diversification of the calcareous
nannofossil assemblages (Raffi et al., 2005; Gibbs et al., 2006).

Significant changes are also observed in the benthic realm. Deep-
sea benthic foraminifera suffered the most severe extinction (Benthic
Foraminiferal Extinction, BFE) in the last 90 Ma, which affected 35–
50% of the species within the first 10 kyr of the Eocene (Thomas, 1998,
2003; Alegret et al., 2009a,b;). In contrast, benthic foraminifera from
marginal-marine settings show comparatively less severe extinctions
and temporal changes in composition (Thomas, 2003; Alegret et al.,
2005). Several causes have been proposed to explain the extinction,
including low oxygen conditions, carbonate corrosivity, changes
(mainly decreasing) in oceanic productivity, or a combination of
these (Thomas, 2007 for a review). However, none of these factors has
been documented to have had globally extend, and repopulation of
cosmopolitan species could occur after survival in refugia. In this
context, a rapid global warming, increasing deep ocean temperature,
can be envisaged as themain reason for thewidely extended response
of the microbenthic community (e.g., Thomas, 1998, 2003, 2007;
Alegret et al., 2009a,b).

Unlike deep-sea benthic foraminifera, ostracods did not suffer
major extinctions across the PETM (Boomer and Whatley, 1995;
Guernet and Molina, 1997), although important assemblage and test
size changes have been documented (Steineck and Thomas, 1996;
Speijer and Morsi, 2002; Sluijs et al., 2007; Webb et al., 2009). So far,
benthic analysis has been mainly focused on microfossil data, mainly
benthic foraminifera and secondarily ostracode assemblages, while
the effects of the PETM on macrobenthic environment has been
scarcely considered (see recent ichnological analyses in Nicolo, 2008,
and Smith et al., 2009). However, biogenic structures reveal trace
maker behavior in response to environmental features, providing a
Fig. 1. (A) Geographical location of the Zumaia section. (B) Paleocene paleog
valuable information on paleoenvironmental dynamic as well as to
approach future environmental changes. The aim of this paper is to
address the impact of the Paleocene–Eocene thermal maximum on
the macrobenthic community of trace makers, based on a high-
resolution ichnological analysis of the Zumaia section, focusing on
ichnotaxa composition and ichnofabric changes. Variations of ichno-
logical features across the Paleocene–Eocene transition, and compar-
ison with deep-sea benthic foraminiferal assemblages and isotopic
data, might help to understand environmental changes during the
PETM.

2. Geological setting

The Zumaia section (N43°17.98′; W002°15.63′) contains a contin-
uous succession of sediments ranging from lower Santonian through
the uppermost lower Eocene, which crops out along sea-cliffs and
beaches between the cities of Bilbao and San Sebastian (northern
Spain; Figs. 1A and 2). This section can be considered one of the most
complete, continuous and expanded sections of the Paleocene in open-
marine facies in western Europe and the Mediterranean (Hillebrandt,
1965; Canudo et al., 1995). The uppermost Paleocene and lowermost
Eocene sediments of the Zumaia section were deposited in offshore
areas of the PyreneanBasin, close to the boundary betweenmiddle and
lower bathyal environments, at about 1000 m depth (Fig. 1B; Pujalte
et al., 1998; Bernaola et al., 2007, 2009; Alegret et al., 2009a). The basin
was open westward to the proto-Bay of Biscay and the North Atlantic,
and thus influenced by northern temperate waters (Ortiz, 1995;
Bernaola et al., 2009) (Fig. 1B).

The Paleocene-Eocene boundary interval consists of rhythmic
alternations of hemipelagic limestones, marly limestones and marls,
with numerous intercalations of thin-bedded turbidites (see Baceta
et al., 2000 for a detailed columnar section) belonging to the Itzurun
Formation (Baceta et al., 2004). The uppermost 80 cmof the Paleocene
consists of a hemipelagic limestone unit (called the “green” limestone
due to its glauconite content) that includes a 4-cm-thick carbonate
turbidite bed (Pujalte et al., 1998; Schmitz et al., 2000; Dinarès-Turell
et al., 2002) (Figs. 2 and 3). This greenish-gray limestone unit is
overlain by a 35-cm-thick marls bed in which the Benthic Extinction
Event (BEE) and the onset of the Carbon Isotopic Excursion (CIE) was
reported (Schmitz et al., 1997). Themarl bed is overlain by a 4-m-thick
interval of reddish claystones and silty claystones (the “siliciclastic
eography of the Pyrenean Basin showing location of the Zumaia section.



Fig. 2. Outcrop of the Paleocene–Eocene boundary interval. For the log, see Fig. 3.
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unit” in Schmitz et al., 2000), and higher up in the section, by
alternating limestones and marls. Marl–limestone couplets have been
suggested to represent the expression of precession (Dinarès-Turell
et al., 2002), whereas precession and short eccentricity were
interpreted as the origin of couplets and bundles that make up the
Paleocene succession (Dinarès-Turell et al., 2003, 2007).

3. Ichnological analysis

The first ichnological study in this area was performed by Gómez
de Llarena (1946), who described Cretaceous and Paleogene trace
fossils from the Flysch of Guipúzcoa province, including the Zumaia
section. The present ichnological analysis was performed based on
observations (Fig. 3). Samples from selected beds were collected and
observed in variably oriented, polished surfaces, for study of the
ichnofabric. Surfaces were oiled in order to improve color contrast and
to facilitate the analysis of ichnological details such as filling material
and burrow margins.

3.1. Synopsis of trace fossils

Only occasionally discrete trace fossils have been tentatively
differentiated. Six ichnogenera have been recognized, including
Chondrites isp., Avetoichnus luisae, Planolites isp., Scolicia isp., Thalassi-
noides isp., and Zoophycos isp. Planolites is the most abundant
ichnotaxon, followed by small Chondrites and Thalassinoides. Zoophy-
cos and Scolicia occurs occasionally, whereas Avetoichnus luisae and
large Chondrites are rare.

Avetoichnus luisae is (Fig. 4C and D): endichnial, horizontal,
straight tightly-spaced spiral, 3.5–5 mm wide, at least 25 mm long,
seen on parting surfaces in the top part of turbiditic marls as tightly
spaced zigzags, 1.5–2 mm wide. Kinks of the zigzacks, i.e., helical
turns, are 1.5–3.5 mm apart. Six to eight helical turns occur over
20 mm. The row is about 10 mm long. This trace fossils is interpreted
as a non-graphoglyptid middle tier complex agrichnion, adopted to
high competition for food the deep sea during the Paleogene (Uchman
and Rattazzi, in press).

Chondrites isp. (Figs. 4A, B and E, 5F, and 6A): a system of
downward branching, tunnels with a width of 0.7–1 mm being
uniform for one burrow system. Branches at sharp, rather constant
angles. The entire trace fossil is up to 35 mmwide. In cross section it is
seen as a group of small spots (Fig. 6A). A larger form (Fig. 4B) with
tunnels of 2.5–3.5 mm diameter in cross section also is present. At
least some specimens of the small form can be assigned to Chondrites
Fig. 3. Log of the Paleocene–Eocene boundary interval with indication of the samples,
the trace fossil ranges, and the primary lamination level.
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Fig. 4. Trace fossils of the Paleocene–Eocene boundary interval: (A) Chondrites intricatus on a parting surface, an example of Chondrites isp. small form, ZP/E62; (B) Chondrites isp.
(Ch) large form, on polished horizontal surface, ZP/E63; (C) Avetoichnus luisae on a horizontal parting surface, bed ZP/E63; (D) Avetoichnus luisae on a horizontal parting surface, ZP/
E56; (E) Planolites isp. (Pl) reworked with Chondrites isp., small form, parting surface, ZP/E62; and (F) Planolites isp. on the lower surface of a turbiditic sandstone bed, ZP/E12.
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intricatus (Brongniart, 1823). The larger form belongs probably to
Chondrites targionii (Brongniart, 1828). Chondrites is most often
attributed to an opportunistic behavior tracemakers tolerant of very
low-oxygen environments (e.g., Ekdale and Bromley, 1984), com-
monly associated with organic-rich deposits (Vossler and Pemberton,
1988), and related to the latest phase of opportunistic colonization of
turbidites and other event beds (Wetzel and Uchman, 2001).

Planolites isp. (Figs. 4E and F, 5F, and 6A): horizontal, cylindrical
trace fossils with sharp margins but no distinct wall, 4–5 mm wide,
filled with different, mostly darker material. In cross section, the trace
appears as oval spots of corresponding size. Filling of some specimens
is reworked with contorted Chondrites. Hypichnial forms (Fig. 4F) in
sandstone beds are seen as semicircular ridges and knobs. Planolites is
usually interpreted as a feeding structure (pascichnion) of deposit
feeders, which can belong to different phylla, mainly polychaetes.

Scolicia isp. (Fig. 5A and B): endichnial, horizontal, semicylindrical
structure, about 30 mmwide, observed in the turbiditic sandstones. In
horizontal sections it is seen as an unwalledmeniscate structure of the
“laminites” type, a characteristic preservational variant of Scolicia (see
Uchman, 1995). In vertical section, it is seen as a meniscate stripe-like
or oval structure, but with a faint record of the menisci. Scolicia is
common in sediments rich in benthic food, being its distribution and
size affected by the amount and quality of benthic food (Wetzel,
2008).

Thalassinoides isp. (Figs. 5B, C and F, and 6A): endichnial,
horizontal to subhorizontal straight or slightly curved, branched
tunnels, without wall. They are generally 7–9 mm wide, mostly with
Y-shaped, up to 12 mm wide branching. In cross section, this trace
fossil is preserved as oval spots and stripes of corresponding size,
which are filled mostly with darker sediment. Thalassinoides is mainly
attributed to crustacean deposit feeders (Ekdale, 1992), in oxygenat-
ed, soft but cohesive sediment (Ekdale et al., 1984; Wetzel, 2008).

Zoophycos isp. (Fig. 5D–F): endichnial, horizontal to sub-horizontal
planar spreiten structures seen on parting surfaces as (1) fragmen-
tarily preserved lobes, 25–30 mm wide, encircled by a marginal
tunnel that is 3–4 mm wide, or seen (2) in cross section as dark
stripes, 1–2 mm thick, with an occasionally preserved meniscus-like
structure, which is the cross section of the spreite. Some of the stripes
are reworked with contorted Chondrites. Zoophycos is common in
environments with fluctuating benthic food. Its producer is unknown,
and different ethological explanations have been proposed (see
Löwermark et al., 2004 for an updated review).

3.2. Cross-cutting relationships and tiering pattern

Cross-cutting analysis shows a well established relationship
between the different trace fossils, with Chondrites and Zoophycos
cross-cutting the rest of ichnotaxa. Almost all trace fossils are present
against a mottled ichnofabric (Fig. 7), which represents a totally
bioturbated, few centimeters-thick zone near the surface layer,
consisting of biodeformational structures (see Schäfer, 1956, and
Wetzel, 1991 for a detailed description). This comprises the so-called
mixed layer in which no discrete trace fossils are preserved due to
biogenic mixing of shallow-tier burrowers in water-saturated near
surface sediment (see; Berger et al., 1979; Wetzel, 1991; Bromley,
1996). The trace fossil assemblage represents intermediate (Planolites,
Thalassinoides and endichnial Scolicia) and deep tiers (Zoophycos, and
Chondrites) from the so-called transitional layer. This normal, tiered

image of Fig.�4


Fig. 5. Other trace fossils: (A) Scolicia isp. (Sc) in a turbiditic sandstone bed, cross section, ZP/E20; (B) Scolicia isp. (Sc) and Thalassinoides isp. (Th) in a turbiditic sandstone bed,
horizontal section, ZP/E50; (C) Thalassinoides isp. on a parting surface, ZP/E62; (D) Zoophycos isp. (Zo) in cross section of a marly mudstone bed, ZP/E15; (E) Zoophycos isp. on a
parting surface, ZP/E34; and (F) Zoophycos isp. (Zo), Thalassinoides isp. (Th), Chondrites isp. (Ch) reworking Planolites isp., Planolites isp. (Pl), in cross section of a marly mudstone bed,
ZP/E34.
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burrowing community agrees with the classic ichnofabrics model for
pelagic sediments (e.g., Ekdale and Bromley, 1991; Bromley, 1996).
Occasionally this tiered community disappears and only the mottled
ichnofabric is present. In one horizon only primary lamination is
present.

3.3. Stratigraphic variations of the ichnological assemblage

The ichnotaxa present, their abundance, and the ichnofabrics show
significant variations through the studied succession, allowing the
differentiation of four stratigraphic intervals; from the bottom to the
top of the section they are described (Fig. 7):

Interval A Corresponding to the uppermost 6 m of the Paleocene, this
interval is composed of alternating grayish to greenish
hemipelagic limestones, marly limestones and marls, with
intercalations of numerous thin-bedded turbidites and the
presence of glauconite. In this interval all the ichnotaxa
described above are present, representing the normal, tiered
burrowing community, and they occur against a mottled
ichnofabric. The trace fossil assemblage shows an increase in
the number and abundance of the ichnotaxa in the middle
part of the interval (around the lowermost 3 m), and a clear
decrease upwards in the uppermost 2 m. In addition,
successive alternations between trace fossil bearing seg-
ments and short horizons without trace fossils (where only
the mottled ichnofabric is observed) are clearly visible.

Interval B Corresponds to the approximately lowermost 40 cm of the
Eocene. Trace fossils are almost absent within this reddish
green interval. The six previously recorded ichnotaxa,
representing the tiered burrowing community, are absent
and only amottled ichnofabric, but not discrete trace fossils,
is recognized on polished surfaces. An around 20 cm-thick
horizon characterized by primary lamination and the total
absence of bioturbational structures (including the mottled
ichnofabric) occurs at the top of Interval B, coinciding with
the base of the overlying reddish claystones.

Interval C This interval overlies the laminated bed and consists of a
2-m-thick interval of reddish claystones and silty clays-
tones (the “siliciclastic unit” in Schmitz et al., 2000),
characterized by a mottled ichnofabric and the absence of
trace fossils as in Interval B.

image of Fig.�5


Fig. 6. Ichnofabrics of the boundary interval: (A) deeply bioturbated marly mudstone of
the Interval A, with well preserved deep tier trace fossils on the totally bioturbated
ichnofabric, Thalassinoides isp. (Th), Chondrites isp. (Ch), Planolites isp. (Pl), cross
section, ZP/E47-48; (B) finely laminated red marlstone of the Interval B, ZP/E66; and
(C) shallowly but totally bioturbated red marlstone of the Interval D, ZP/E69.
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Interval D Corresponds to a 2-m-thick interval of reddish claystones
and silty claystones (the “siliciclastic unit” in Schmitz et al.,
2000), which are overlain by a 1-m-thick interval of
sandstone beds towards the top of the studied section. This
interval is characterized by scarce trace fossils (mainly
Planolites, Thalassinoides and Zoophycos) against the
mottled ichnofabric.

4. Interpretation and discussion

4.1. Benthic micropaleontological assemblages and the PETM

In the Zumaia section the analysis of benthic foraminiferal
assemblages across the PETM, correlated with data from planktic
foraminifera and calcareous nannofossil (Canudo and Molina, 1992;
Canudo et al., 1995; Schmitz et al., 1997; Orue-Etxebarria et al., 2004;
Angori et al., 2007), revealed significant changes (turnovers and
extinctions) associated with the negative carbon isotope excursion
(CIE) (Alegret et al., 2009a). A 115-cm-thick interval deposited during
the latest ~46 kyr of the Paleocene is characterized by fluctuations in
the calcareous nannofossil assemblages, suggesting environmental
perturbation (probably related to an initial warming phase in surface
waters) prior to the onset of the carbon isotope excursion (Bernaola
et al., 2006; Angori et al., 2007; Alegret et al., 2009a). The Benthic
Extinction Event (Alegret et al., 2009a) was gradual but rapid, with a
duration of around 10.5 kyr, and affecting a total of 55% of the benthic
foraminiferal species. It started just at the Paleocene/Eocene bound-
ary, coinciding with the onset of the carbon isotope excursion, and it
finished ~10.5 kyr later (40 cm above the Paleocene/Eocene bound-
ary); above, a 3 to 4-m-thick dissolution interval is recorded. This
initial warming recorded during the latest Paleocene probably caused
paleoenvironmental instability that resulted in the gradual but rapid
phase of the extinction at the earliest Eocene (Alegret et al., 2009a),
which occurred under oxic conditions at the sea floor. Bottom waters
became carbonate corrosive after the Benthic Extinction Event, as
inferred from the dissolution interval deposited above. Alegret et al.
(2009a) concluded that warming must have been the main trigger
mechanism at Zumaia, and the only global feature of the PETM for
which there were no refugia.

4.2. PETM and the ichnological record

The different ichnological features display significant changes from
pre-, to syn- and to post-PETM intervals, which can be interpreted in
terms of environmental parameters affecting the macrobenthic realm
(Fig. 7).

4.2.1. Pre-PETM (Interval A)
As a general interpretation, the presence of a normal, tiered

burrowing community during the Late Paleocene implies an environ-
ment with generally good oxygenation and benthic food availability,
sufficient to sustain the trace makers community. However, the
alternation of horizons with diverse trace fossils with layers containing
a mottled ichnofabric only, without trace fossils points to the
environmental conditions fluctuated, from normal to regionally
relatively depauperated conditions affecting macrobenthic environ-
ment. The absence of primary lamination or “black-shale” like facies and
thepresence of themottled ichnofabric suggest that thesehorizonswith
a mottled ichnofabric only do not represent anoxic events.

The decrease in ichnodiversity and ichnofossil abundance towards
the top of this interval suggests that environmental conditions for
macrobenthic fauna deteriorated during the Late Paleocene, which
was deduced also for the planktic environment from calcareous
nannofossils – beginning of a decreasing trend in abundance and
species richness, together with the break of the previous stability in
the calcareous nannofossil assemblage – and related to the initial
warming phase and the increase in surface water temperatures
(Bernaola et al., 2006) (Fig. 7). Benthic foraminiferal assemblages do
not display significant variations in the upper 100 cm of the Paleocene
(Interval Pa2 in Alegret et al., 2009a); this may be related to the
low sampling resolution within this interval or to the delayed answer
between ocean surface and microbenthic habitat in a bathial
environment (Dr. Wetzel per. com.).

4.2.2. Syn-PETM (Interval B)
This interval corresponds to the lowermost 40 cm of marls of the

Eocene, and it coincides with interval E1 in Alegret et al. (2009a), in
which these authors recognized a gradual but rapid extinction of
benthic foraminifera. The drastic disappearance of trace fossils is
observed in coincidence with the Paleocene/Eocene boundary
(extinction A in Fig. 7), concurrent with the onset of the Carbon
Isotope Excursion (Schmitz et al., 1997), the main warming event of
the PETM, and the beginning of the Benthic Extinction Event (Alegret
et al., 2009a; Fig. 7). Similar ichnofabrics are registered in the entire
40 cm-thick interval of the lowermost Eocene, except for its top. The
exclusive presence of a mottled ichnofabric in this interval is related
to bioturbation of the uppermost part of the substrate, while the
absence of trace fossils indicates inhospitable conditions for deep
burrowers. In a habitat perturbed by the global increase in
temperature, several factors can make the deeper sediment levels

image of Fig.�6


Fig. 7. Tiering pattern model for the Paleocene–Eocene boundary interval at Zumaia, according to the differentiated pre-, syn-, and post-PETM intervals (Intervals A to D), based on
the registered ichnological features. Correlation with curves in %CaCO3 and δ13C (Schmitz et al., 1997) and benthic foraminiferal data, including the differentiated Intervals Pa2, E1,
E2, and E3 in Alegret et al. (2009a). BEE, Benthic Foraminiferal Extinction Event; CIE, Carbon Isotope Excursion; and PDB, Pee Dee Belemnite standard.
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less suitable for macrobenthos, while maintaining somewhat more
hospitable conditions in the uppermost part. Among the interpreted
limiting factors affecting the macrobenthic habitat, oxygenation and
benthic food availability are the most usually invoked. An increased
nutrient supply in surface waters during this period would increase
accumulation and degradation of organic matter on the sea floor,
causing depletion of pore water oxygenation and an upward
movement of the redox boundary. Concentration of benthic food in
very shallow sediment surface layers together with lowered oxygen-
ation, but not anoxia, could induce disappearance of deeper trace
makers, while those living in shallower substrates, close to the sea
floor, with benthic food available and in contact with oxic ocean
bottom waters, could survive (see similar recent examples in Wetzel,
1991). This agrees with the absence of evidence for low oxygen
conditions based on the analysis of benthic foraminifera (Alegret et al.,
2009a); these micro-organisms inhabited the uppermost centimeters
of the sediment where oxygenation was sufficient.

The presence of primary lamination and the absence of bioturbation
structures at the top of the Interval B (from 20 to 40 cm above the P/E
boundary) indicate an un-inhabitable macrobenthic environment,
which triggered the total disappearance of trace makers (extinction B
in Fig. 7). This thin laminated horizon reveals a short-time, drastic
change in the environmental conditions that can be correlated with the
boundary between Intervals E1 and E2 of Alegret et al. (2009a), around
the interval where 37% of the benthic foraminiferal species went extinct
(Fig. 7). With the high temperatures of the early Eocene, a gradual

image of Fig.�7
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organic matter enrichment during deposition of the laminated horizon
at the top of interval B may have accelerated oxygen consumption
leading a oxygen level too low for the macrobenthic burrowers and
hence allowing preservation of primary lamination. Increase in nutrient
supply and thus, organicmatter deposition during Interval B is coherent
with a high sediment input from the continent, as indicated by the
presence of a thick conglomeratic unit at the basin margin forming the
proximal part of an alluvial megafan; it has been related to a dramatic
increase in seasonal rain with severe floods and rainstorms that
occurred around 10 ky after the Paleocene–Eocene close to the Zumaia
(Schmitz and Pujalte, 2003, 2007). Local sea-level changes could favor
land exposition and the amount of nutrients coming from the continent.
Alternatively or additionally, the increase in water temperature and
spreading of large amount of rain water on the sea can cause a
stratification of waters leading to anoxia (Keeling et al., 2010).

In different environmental settings, such as in marginal and
epicontinental basins in some parts of the Tethys and northeastern
peri-Tethys, laminated beds (black shales and sapropelites) enriched
in organic carbon were deposited during the Initial Eocene Thermal
Maximum, and have been related to increasing productivity leading to
oxygen depletion and local dysoxic conditions (see references in
Thomas, 2007).

4.2.3. Post-PETM (Intervals C and D)
Interval C corresponds to interval E2 in Alegret et al. (2009a),

which includes the 2 m of the siliciclastic unit (Fig. 7). This interval is
devoid of calcareous deposits, with the main drop in %CaCO3 recoded
towards its base, extremely negative values of δ13C (Schmitz et al.,
1997), and microfossil assemblages strongly dissolved due to
corrosive bottom waters after the BEE (Alegret et al., 2009a). The
sole presence of a mottled ichnofabric in Interval C indicates that the
environmental conditions recovered very slowly (Fig. 7), after the
worst environmental conditions for the macrobenthic community
represented by the Interval B. We suggest that during deposition of
Interval C, nutrient availability and oxygen depletion consumption
diminished gradually and the benthic food recovered, favoring
colonization of the uppermost part of the sediment (mixed layer).
However, recovery was slow and organic matter availability in deeper
tiers and maybe oxygenation at that time were insufficient for the
establishment of a normal, tiered trace makers community.

The progressive macrobenthic recovery initiated in Interval C
continued during Interval D, as indicated by the presence of rare
discrete trace fossils on the mottled ichnofabric, reflecting a gradual
restoration of the normal, tiered burrowing community (Fig. 7).
Probably, benthic food content deeper within the sediment and pore
water oxygenation increased sufficiently to allow the initial coloni-
zation of sediments intervals below the mixed layer. The tiered
burrowing community was still vertically not expanded in compar-
ison to the Late Paleocene communities, indicating that environmen-
tal conditions were not fully reestablished. This interval could be
correlated, in part, with the upper 2 m of the siliciclastic unit, which
corresponds to interval E3 in Alegret et al. (2009a) (Fig. 7). This
interval is characterized by the gradual recovery of δ13C levels
(Schmitz et al., 1997), and a decrease in corrosion effects of carbonate
shells, and has been related to a slow deepening of the CCD after the
initial, abrupt acidification of the oceans (Alegret et al., 2009a).

5. Conclusions

Our high-resolution ichnological analysis of the Paleocene–Eocene
transition in the Zumaia section (northern Spain), in combination
with published benthic foraminiferal, calcareous nannofossil, planktic
foraminiferal and isotopic data, allowed us to analyze the effects of the
Paleocene–Eocene thermal maximum (PETM) on the macrobenthic
community, and the main environmental changes involved. Signifi-
cant variations of the ichnological features in the pre-, syn- and post
PETM intervals indicate that the trace maker community was
significantly affected by the increased temperatures, as well as by
changes in benthic food availability and in the degree of oxygenation
of bottom waters during the PETM. Changes in the environmental
parameters can be induced by climatic fluctuations, together with
variations in the sea-level.

During the latest Paleocene, a well developed, normally tiered
burrowing was present at the location of the Zumaia basin, consistent
with oxic conditions and organic matter availability. At the beginning
of the PETM, in coincidence with the onset of the carbon isotope
excursion and the beginning of the Benthic Foraminiferal Extinction,
the macrobenthic community was significantly altered; specific trace
fossils disappeared, and the only record was that of a mottled
ichnofabric, indicative of the presence of trace makers only in the
uppermost few centimeters of sediment, just below the sediment/
water interface. This turnover suggests colonization of the uppermost
part of the substrate, very shallow surface layers, while the absence of
trace fossils points to inhospitable conditions for deep burrowers.
These assemblage changes may be related to the global rise in
temperatures, togetherwith an increase in thefluxof organicmatter to
the sea floor, and probably a higher rate of oxygen consumption and
oxygen deficiency in deep layers of the sediment. These significant
changes in the environmental parameters can be induced by climatic
fluctuations together with local sea-level variations. Maximum
deterioration in the macrobenthic environment is registered for a
very short time (corresponding to an around 20-cm-thick level), in
which bioturbational structures are absent and primary lamination is
preserved. This thin level may indicate low oxygen conditions, but not
anoxia, in the sediment. This level is close to the Benthic Foraminiferal
Extinction, revealing that the environmental perturbation significantly
affected the whole benthic habitat. However, detailed correlation
between this thin level and the BFE is difficult, and high-resolution
studies are needed. Following the PETM, more favorable environmen-
tal conditions for macrobenthic communities returned slowly and
gradually, based on the continuous ichnological record of the mottled
ichnofabric to scarce trace fossils, indicating the reestablishment of the
normal, tiered burrowing community.We suggest that the abundance
of organic matter increased deeper into the sediment, favoring
progressive colonization of deeper tiers by trace makers.

We conclude that ichnological features through the Paleocene–
Eocene interval reveal (1) the impact of the Paleocene–Eocene thermal
maximum on the macrobenthic community, (2) the importance of
benthic food availability and oxygenation rate in a global habitat
perturbed by increased temperatures, and (3) the similarities and
differences in the response to the global phenomena between micro-
and macrobenthic communities, (4) the usefulness of trace fossil
analysis to interpret changes in the atmosphere–ocean system during
the past, including climatic dynamic, and the potential application for
research of future fluctuations in the environment.
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