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INTRODUCTION

Eustoquio Molina

Departamento de Ciencias de la Tierra, Universidad de Zaragoza, E-50009 Zaragoza, Spain

The definition of chronostratigraphic units through their boundaries is being accomplished
following the International Commission on Stratigraphy (ICS) Guidelines (Cowie et al, 1986).
Stages originally defined by their contents are now defined by their lower boundary: Global
Stratotype Standard-section and Point (GSSP). Stages may be characterized by their contents,
but precise definitions of stages can only be attained by boundary definitions. The emphasis
has therefore been placed on the precise definition of boundaries. ICS groups do not look any
longer for the unit-stratotype but for the succession offering the most detailed documentation
of the transition from one stage to the next one (Remane, 2003).

The International Commission on Stratigraphy requires that its Subcommissions organize
working groups to choose a GSSP for each international chronostratigraphy boundary.
According to the ICS revised Guidelines (Remane et al. 1996) a suitable candidate section has
to fulfil a series of requirements since the function of the type-section is to give an unbiased
and complete record of the most relevant marker events. However, the absolutely perfect type-
section will often not exist and the requirements enumerated below are intended to characterize
the ideal type-section and most of them must be, but not all of them can be fulfilled in every
case. The Geological requirements are: exposure over an adequate thickness of sediments,
continuous sedimentation, the rate of sedimentation should be high enough, absence of
synsedimentary and tectonic disturbances, absence of metamorphism and strong diagenetic
alteration. The Biostratigraphic requirements are: abundance and diversity of well preserved
fossils, absence of vertical facies changes and favourable facies for long range biostratigraphic
correlations (open marine environment). Other requirements are: amenability to radiometric
dating, magnetostratigraphy and chemostratigraphy, possibility to fix a permanent marker,
accessibility, free access and permanent protection of the site.

The Ypresian/Lutetian boundary statotype has to be defined in an event correlable with the
base of the Lutetian, which is the lowermost standard stage of the Middle Eocene {(Jenkins and
Luterbacher, 1992). The boundary stratotype must be defined by a lithological level in a
stratigraphic section, coinciding with an easily correlable event, in a suitable marine continuous
section, preferably out of the Paris basin where the Lutetian stage was defined, since the Lutetian
in the Paris basin is a sedimentary sequence between two hiatuses. An important problem is the
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scarcity of continuous sections at the Ypresian/Lutetian transition due to the large offlap/sea
level fall event that cuts out part or the entire NP13/14 calcareous nannofossil interval in many
sections. This hiatus is very frequent in the Atlantic Ocean (Aubry, 1995). Consequently, the GSSP
will have to be located in a deep water section with minimal evidence of disturbance, transport
and erosion.

According to Luterbacher et al. (2004) the Ypresian stage was introduced by Dumont in 1849
to include the shelf-facies strata lying between the terrestrial to marginally marine Landenian
and the marine Brusselian in Belgium. Later Dumont in 1851 assigned the upper sandy part of
the stage to the Paniselian, apart from the Ypresian sensu stricto, which is typified by the Yper
Clay of western Belgium. Biostratigraphically, the Ypresian is well restrained by its dinocyst
and calcareous nannoplankton associations (e.g. Vandenberghe et al., 1998). It is characterized
by nannoplankton zones NP11, NP12 and NP13 (Martini 1971) and possibly the base of NP14
in the Aalter Sands. Magnetostratigraphic studies (Ali and Hailwood, 1995) correlate the
Ypresian interval with polarity Chrons C24r-C22r. According to Cavelier and Pomerol (1986)
the Ypresian covers the whole of the Cuisian, extending beyond the Cuisian to include zone
NP13 and possibly the base of zone NP14. In its lower part the Ypresian also covers the middle
and late llerdian.

The Lutetian was defined by De Laparent in 1883 and is typified by the “Calcaire grossier” of
the Paris Basin. The stratotype was selected by Blondeau (1981) approximately 50 km north of
Paris at St. Leud’Esseret and St. Vaast-less-Mello. Biostratigraphically, the Lutetian stratotype
contains larger foraminifera, palynomorphs and calcareous nannoplankton. According to Aubry
(1983, 1995) the base of the Lutetian falls in the upper part of the nannoplankton NP14 Zone of
Martini (1971) and in the CP12b Zone of Okada y Bukry (1980), extending to zones NP15 and the
lower part of NP16. And in terms of shallow benthic foraminifera the base of the Lutetian is
approximately placed at the base of the SBZ13 Zone of Serra-Kiel et al. (1998). According to
Cavelier and Pomerol (1986) the early and middle Lutetian correspond to the Nummulites
laevigatus and Alveolina stipes Zones, while the late Lutetian is already in the Alveolina elongata
Zone characteristic of the Biarritzian s.s., which is entirely contained whithin the Lutetian.

The International Subcommission on Paleogene Stratigraphy (ISPS) decided to set up a
working group to select a GSSP for the base of the Lutetian Stage and appointed Eustoquio
Molina to be its chairman in 1992. Since then the most active members of the working group
visited and sampled several sections in Italy, Israel, Tunisia, Morocco, Mexico and Argentina,
but unfortunately none of the studied sections was considered a good candidate. In Spain many
sections were visited and sampled in the Betic Cordilleras (Alamedilla, Agost, Fortuna, etc.)
and in the Pyrenees (Anotz, Campo, Erro, Gorrondatxe, Guetaria, Osinaga, Otsakar, etc.). Most
of these Betic and Pyrenean sections are not ideal, as they are plagued with hiatuses, restricted
facies, tectonic complications and other problems (Gonzalvo et al., 2001; Payros et al., 2006).The
Fortuna section was considered a leading candidate, but the boundary interval is very
condensed (Molina et al., 2006) and consequently now is not considered a suitable section to
define a GSSP.

Lately, the research has been focused on the study of the two more suitable sections to define
the Lutetian GSSF, which are the Agost and Gorrondatxe sections. The results of both sections
show that the different events traditionally used to place the Ypresian/Lutetian boundary,
previously thought to be almost simultaneous, actually occur at very different levels. The first
appearance of Hantkenina nuttalli, frequently used by planktic foraminifera specialists to mark
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this boundary (Berggren et al., 1995), is younger than the Lutetian strata in Paris, according to
the new data from the Agost section (Molina et al., 2000; Larrasoaiia et al., 2008; Ortiz et al,,
2008) and the Gorrondatxe section (Bernaola et al., 2006; Payros et al., 2007). The closest event
to the base of the original Lutetian stage seems to be the first occurrence of the calcareous
nannofossil Blackites inflatus at the base of Subzone CP12b (Aubry, 1986). The integrated
magnetobiostratigraphic studies carried out at the Agost and Gorrondatxe sections provide
conclusive evidence that both sections are almost continuous and contain diverse and well-
preserved fossil groups. However, the Gorrondatxe section seems to be more suitable than the
Agost section and it is now the leading candidate.
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ICHNOLOGICAL ANALYSIS THROUGH THE YPRESIAN/LUTETIAN
BOUNDARY INTERVAL AT THE GORRONDATXE SECTION*

Francisco J. Rodriguez-Tovar!, Alfred Uchman?, Aitor Payros?,
Xabier Orue-Etxebarria®, Estibaliz Apellaniz®, Eustoquio Molina*

'Departamento de Estratigrafia y Paleontologfa, Facultad de Ciencias, Universidad de Granada,
18002 Granada, Spain, Fax number: 00-34-958-248528, e-mail: firtovar@ugr.es
?agiellonian University, Institute of Geological Sciences, Oleandry Str. 2a, PL-30-063 Krakdw, Poland
Departamento de Estratigrafin y Paleontologia, Facultad de Ciencia y Tecnologia, Universidad del Pafs Vasco,
P.O. Box 644, E-48080 Bilbao, Spain
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, E-50009 Zaragoza, Spain

From the beginning of the twenty-first century, ichnology underwent rapid growth, showing
the potential of trace fossils analysis in a wide range of fields (i.e., palaeobiology, palaeoecology,
and sequence stratigraphy, among others). This important expansion is reflected in several
symposium volumes, books, and monographs published recently (i.e., Pemberton et al. 2001;
Buatois et al. 2002; Hasiotis, 2002; Mcllroy, 2004; Bromley et al. 2007; Miller, 2007; Seilacher, 2007;
MacEachern et al. 2008). In the last years ichnological analysis has been revealed as a very valuable
tool in the interpretation of palaeoceanographic changes affecting benthic biota, during different
range extinctions events. On this basis, part of the presented research (Rodriguez-Tovar and
Uchman) has been focused on the recognition, characterization and interpretation of stratigraphic
intervals of special incidence in the macrobenthic biota, determining relevant changes and even
extinctions in the community. Trace fossil composition and distribution, including cross—cutting
relationship and tiering, together with the ichnofabric approach, have been used to determine how
severe the macroinfaunal crisis was during the impact event at the Cretaceous-Palaeogene
boundary interval (Rodriguez-Tovar et al., 2002, 2004, 2006; Rodriguez-Tovar and Uchman, 2004a,
b, 2006, 2008; Rodriguez-Tovar, 2005), the importance of oxygenation changes and nutrients
availability during the Oceanic Anoxic Event at the Cenomanian-Turonian boundary interval
(Rodriguez-Tovar et al., 20093, b), or the incidence of variations in palaeobathymetry, sedimentation
changes and organic matter flux on benthic assemblages during the Ypresian/Lutetian transition
(Ortiz et al., 2008). All of this allows us to corroborate the potential of the ichnological analysis in
basin research, including its integration to define stratigraphic boundaries related to macrobenthic
changes. In this context, integration of trace fossil data to precisely define the Ypresian/Lutetian
boundary at the Gorrondatxe section will be of especial interest.

* Expanded abstract of: Rodriguez-Tovar J.F. et al. (2009). See-level and palaeoecological factors affecting
trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogrography,
Palaeoclimatology, Palaececology (under review).
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Trace fossil assemblage at the Gorrondatxe section

Recent ichnological analysis of the Gorrondatxe section revealed a moderate diversity in
the trace-fossil assemblage, which contains 41 ichnospecies belonging to 28 ichnogenera,
arranged in morphological groups according to Ksiazkiewicz (1977) with further modifications
by Uchman (1995) (Table I). This trace-fossil assemblage is typical of the deep-sea Nereites
ichnofacies, with a significant contribution of shallow-tier, pre-depositional structures, mainly
graphoglyptids (winding and meandering Helminthorhaphe and Cosmorhaphe, branched winding
and meandering Desmograpton, Urohelminthoida, Acanthorhaphe, Paleomeandron and Protopaleo-
dictyon incompositum, and networks Paleodictyon and Megagrapton), and shallow to deep-tier
post-depositional forms (Planolites, Nereites, Multina, Thalassinoides, Ophiomorpha, Chondrites,
Zoophycos, Scolicia, Trichichnus). The generalized presence of graphoglyptids through the section
is typical of the Paleodictyon ichnosubfacies, which is common in distal flysch deposits
(Seilacher, 1974; Uchman, 1999, 2001, 2004). The general ichnofacies characterization corrobo-
rated previous interpretations for the sedimentary environment, of a submarine fan fringe or
basin plain, with occasional lateral sediment supply (Payros et al., 2006).

Some ichnotaxa are continuously recorded through the section, with Chondrites intricatus,
Ch. targionii, Ophiomorpha annulata and Scolicia strozzii being the most common and relatively
abundant, and considered as the background components of the trace-fossil assemblage.
Planolites, Thalassinoides, and Zoophycos also occur throughout the section, but less frequently
and less continuously. Spirophycus also shows punctual record in practically the entire section,
except for the lowermost part, and the same is true for Ophiomorpha rudis but it is absent in the
lowermost and uppermost parts of the section. Trace fossils composition, diversity and
abundance of the remaining ichnotaxa (graphoglyptids, and other post-depositional ichnotaxa)
fluctuate significantly throughout the section, irrespective at least in part to frequency of
turbidites, allowing distinction of five intervals. The fluctuations are related foremost to changes
of trophic level, and additionally to temperature, quality of substrate and ecological
disturbances, which in turn are partly controlled by the sea-level dynamics according to the
sequence-stratigraphy proposal. Increased diversity of trace fossils and particularly of
graphoglyptids is interpreted as an occurrence of moderate oligotrophy and stabilization of
ecological conditions. The change of substrate from siliciclastic to marly or limy mud during
stillstand, eutrophisation, lowered oxygenation and drop of temperature, typical of low sea
level, can limit diversity of graphoglyptids and trace fossils in general.

Trace fossil assemblage through the Ypresian/Lutetian boundary interval

From the five intervals differentiated, especially significant are the changes occurred in
the trace-fossil assemblage at the upper part of the interval A and the base of the interval B,
around the Ypresian/Lutetian boundary interval (Fig. 1):

Interval A, distinguished in the lower part of the section, corresponds to the second
turbiditic-poor interval, and is dominated by hemipelagic marlstones. This interval shows a
moderate diversity and abundance of pre- and post-depositional trace fossils; apart from the 9
ichnospecies continuously recorded through the section, another 13 are also recognized (Table ],
Fig. 1). Some of them are exclusive of this interval, incdluding Alcyonidiopsis isp. A, ?Urohelminthoida,
Helminthorhaphe japonica, Multina, Protopaleodictyon, and Paleodictyon miocenicum. Others like
Helminthopsis, Helicodromites and Trichichnus also occur in the middle part of the section, while
Desmograpton and Phycosiphon, only with punctual record in the interval A, also appear in the
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Tablel. Ichnotaxa of the Gorrondatxe section {in black those from intervals A or B), their ethology, relation to
turbiditic beds, morphological affiliation with indication of graphoglyptids, and location in intervals A
or B. BWM - branched winding and meandering; WM - winding and meandering; N - Network; SpH -
spiral and helical.

Ichnotaxa Ethological Pre-, Post- Morphological  Graph Interval
category depositional group A-B
origin
? Acanthorhaphe isp. agrichnia pre BWM X
Alcyonidiepsis isp. A pascichnia post simple A
Alcyonidiopsis isp. B pascichnia post simple
Chondrites intricatus chemichnia post branched A-B
Chondrites targionii chemichnia post branched A-B
Cosmorhaphe sinuosa agrichnia pre WM X
?Cosmorhaphe isp. agrichnia pre WM X A-B
Desmograpton dertonensis agrichnia pre BWM X A
Glockerichnus alata agrichnia? pre radial x
Helicodromites isp. ?chemichnia, post SpH A
?fodinichnia
Helminthopsis abeli pascichnia pre WM A-B
Helminthorhaphe japonica agrichnia pre WM A
Megagrapton submontanum agrichnia pre network
Multina minima pascichnia post N-BWM A
Naviculichnium marginatum ?pascichnia post WM
Nereites irregularis pascichnia post WM
Nervites isp. pascichnia post WM B
Ophiomorpha annulata domichnia post branched A-B
Ophiomorpha rudis domichnia post branched A-B
Palaeophycus tubularis fodinichnia/ post simple A
domichnia
Paleodictyon minimum agrichnia pre network X
Paleodictyon strozzii agrichnia pre network x
Paleodictyon miocenicum agrichnia pre network X A
Paleodictyon majus agrichnia pre network X B
Paleodictyon arvense agrichnia pre network X
Paleomeandron cf. robustum agrichnia pre BWM
Phycosiphon incertum fodinichnia post spreiten A
Planolites isp. pascichnia post simple A-B
Protopaleodictyon incompositum agrichnia pre BWM X A-B
Scolicia prisca pascichnia post WM
Scolicia strozzii pascichnia pre WM A-B
Scolicia vertebralis pascichnia post wM
Scolicia isp. pascichnia post WM
?Spirocosmorhaphe labyrinthica agrichnia pre WM X
Spirophycus bicornis pascichnia? pre SpH A-B
Strobilorhaphe pusilla fodinichnia? post branched A
Thalassinoides isp. fodinichnia/ post branched AB
domichnia
Trichichnus linearis chemichnia post branched A-B
2Urohelminthoida appendiculata agrichnia pre BWM X A
Zoophycos isp. fodinichnia post spreiten A-B
meandering cylinder ?pascichnia post WM
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upper part of the section. Trace fossil morphologies are variable, including simple (Alcyonidiopsis
isp. A), spreite (Phycosiphon), and helical (Helicodromites) forms, together with branched, winding
and meandering forms, and occasional networks (Multina, Paleodictyon). Agrichnial behaviour
dominates, and others like pascichnia, fodinichnia and chemichnia are rare.

Interval B, differentiated in the lower-middle part of the section, corresponds to the
uppermost part of the second turbidite-poor interval, with the increase of hemipelagic
limestones upwards, and the beginning of the second turbidite-rich-interval. Interval B is
characterized by a highly significant decrease in trace fossil diversity and abundance (Table I,
Fig. 1). Apart from the background ichnotaxa, only punctual records of ?Helminthopsis,
Trichichnus, Nereites irregularis, Protopaleodictyon are noted, being, moreover, mainly registered
in the upper part of the interval. In the base of the interval B, close to the interval A-B transition,
only Nereites isp. is recognized. Most of the interval B ichnotaxa are post-depositional, winding
and meandering structures, showing a dominant pascichnial behaviour. :

The significant changes registered in the trace-fossil assemblage in the intervals A-B
transition were interpreted as caused by variations in palaeoecological features (e.g., oxygenation,
nutrients), probably conditioned by the sea-level dynamics. Interval A is characterized by a high
diversity and abundance of pre-depositional trace fossils, which show a high morphological
variability, with punctual record of networks. The abundance of agrichnia (all graphoglyptids) is
significant. Relatively frequent pre-depositional trace fossils at the interval A, including several
types of graphoglyptids, could be related to the generally interpreted well oxygenated,
moderately oligotrophic environment, in which the feeding strategy (microbe gardening or
trapping) is a successful adaptation to nutrient-poor, stable environments (Seilacher, 1977; Miller,
1991; Uchman, 1999, 2003). Interval A corresponds to a general sea-level rise during a TST and
the lower-middle part of the subsequent HST, including the maximum flooding surface between
both systems tracts. Limited lateral flux of nutrients due to the scarcity of turbidites and limited
flux of nutrients from the water column enhanced the general Eocene oligotrophy, and promoted
variable trace maker behaviours in competition for food, resulting in variable morphologies of
trace fossils. Interval B shows a significant change in the trace-fossil assemblage. The diversity
and abundance decreased, with the lowest values in the section. The sharp near-disappearance
of trace fossils, including some graphoglyptids, indicates a worsening of ecological conditions,
which can be caused by several factors. The beginning of the interval is correlated with the
progressive increase in hemipelagic limestones deposited during the high sea-level stillstand
corresponding to the late sea-level highstand. The substrate of the background sediments was
changed from siliciclastic mud to marly or limy mud. This change can influence graphoglyptids,
which generally are rare in marly flysch deposits (Uchman, 1999, 2007). The stillstand at the
beginning of this interval could increase the oligotrophy and lower the oxygenation in sediment.
Strong oligotrophy negatively influences trace fossil diversity (Leszczyriski and Uchman, 1993).
Higher organic matter content can shift up the redox boundary. Thinner oxygenated layer of
sediment is also a limiting factor. Burrows produced in shallower tiers have less chance to be
preserved as trace fossils (e.g., Bromley, 1996). It is probable that this possible set of changes
disturbed the ecological stability and caused a general worsening of deep-sea floor life conditions.
As aresult trace fossil diversity dropped. The changes of trace fossils correlate partly with planktic
foraminifera fluctuations and both groups are related to trophic level changes. However, the crisis
of ichnofauna (intervais A-B transition) precedes incursion of cold-water groups. It is not excluded
that incursion of cold water was earlier in the deep-sea than in shallow zones.
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Astrorhizids (e.g., Bathysiphon, Nothia, Rhabdammina), Karrerulina species and Spiroplectammina
navarroana are also abundant, and Ammodiscus, Glomospira species (including G. charoides),
Ammosphaeroidina pseudopauciloculata and Spiroplectammina spectabilis are common. Most of
these taxa are more abundant in the turbidite-poor interval, particularly the trochamminids
{up to 23%). Calcareous taxa are strongly dominated by bolivinids (mainly Bolivinoides crenu-
lata), asterigerinids and Cibicides species. Buliminids, calcareous uniserial (e.g., laevidental-
inids) and unilocular taxa (e.g., Fissurina, Palliolatella), Nuttallides truempyi, and Cibicidoides,
Osangularia, Anomalinoides and Gyroidinoides species are also common. Globobulimina species
(mainly G. ovata) show a very uneven distribution, making up 12% and 24% of the assem-
blages in two samples in the 2™ turbidite-rich interval. Calcareous taxa distribution is also
related to the lithological intervals. Bolivinids, asterigerinids, Cibicides and Globobulimina
species are noticeably more abundant in the 2™ turbidite-rich interval, while the other cal-
careous taxa mentioned above, are more abundant in the turbidite-poor interval. )

Infaunal and epifaunal morphogroups are abundant in the turbidite-poor interval, while in-
faunal morphogroups are dominant through most of the 2" tubidite-rich interval. Bolivinids
and Globobulimina species are infaunal taxa that are abundant under high organic carbon flux
rates at the seafloor. The strong dominance of this group has been generally correlated with
low-oxygen conditions (e.g., Murray, 2006). However, bolivinids and other deep infaunal taxa
have also been recorded in environments with well-oxygenated bottom waters (e.g., Fontanier
et al,, 2005). Asterigerinids are another dominant group in the 2" turbidite-rich interval that
mainly occurs epiphytically in shallow-water environments (e.g., Murray 2006). We consider
asterigerinids to be allochthonous taxa at Gorrondatxe, having been transported downslope
due to the turbidity currents or by floating plant material. The high abundance of Cibicides spp.
in our samples could also be a consequence of the turbidity currents and therefore, allochtho-
nous taxa, but they are usually found attached to hard substrates in high-energy settings (e.g.,
Murray, 2006). We consider that turbidity currents may have played a major role in the com-
position of the benthic foraminiferal assemblages in Gorrondatxe. Therefore, we suggest that
turbidity currents were responsible for the high abundance of allochtonous groups and prob-
ably for the transport of refractory organic matter, which could explain the high abundance of
bolivinids and Globobulimina species (e.g., Jorissen et al., 2007).

A peak of Aragonia aragonensis is recorded in the upper part of the turbidite-poor interval
(CP12b biozone). Aragonia aragonensis, which has been suggested to be an opportunistic species
(Steineck and Thomas, 1996), shows peaks in abundance just after the PETM (e.g., Alegret et
al., 2009) and the Y /L boundary (e.g, Ortiz and Thomas, 2006). However, the peak of A. arago-
nensis is not as distinct as in other sections and it is recorded in an older stratigraphic position
than in other Y /L sections. These data suggest that the peak in A. aragonensis may not be a valid
marker for global correlation of the Y/L boundary.
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results have been obtained (e.g., Bernaola et al., 2006). Thus, of all the potential biostratigraphic
markers, the choice of the FO of B. inflatus as a marker of the boundary might be the most suit-
able primary marker event to define the GSSP for the base of the Lutetian Stage.

In view of these results, the Agost section can be proposed as a suitable candidate to locate
the GSSP for the Ypresian/Lutetian boundary because it fulfils most of the geological, bios-
tratigraphic and accessibility requirements that any prospective GSSI’ should meet (see Remane
et al., 1996): (i} it has a relatively high sedimentation rate, it is demonstrably continuous despite
the presence of some turbidite deposits, and it is exposed over an adequate thickness of sedi-
ments; (ii) it includes diverse and well-preserved fossil groups, and enables the selection of the
primary marker event from a bundle of well dated biostratigraphic events; and (iii) it is easily
accessible and offers the possibility for protection of a permanent marker.
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