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Abstract 

The early Paleogene was characterised by the occurrence of several short and extreme warming events, known as hyper-

thermals, superimposed on a greenhouse climate. The most extreme of these events was the Paleocene-Eocene Thermal 

Maximum (PETM), which was associated with a severe extinction of benthic foraminifera. Consequently, major peaks of 

agglutinated taxa has been registered in several sites during the PETM. Nonetheless, the response of this taxa to smaller 

hyperthermal events is not well known.  

We analysed the evolution of agglutinated taxa across the ETM2 and H2 events at DSDP Site 550 (NE Atlantic Ocean), 

where the most abundant species are Repmanina charoides, Rhizammina spp. and Ammobaculites sp. During the events, R. 

charoides, Glomospirella sp. and Glomospira sp. markedly increased in abundance, reflecting their opportunistic and/or 

disaster behavior under perturbed environments.   

Eocene agglutinated foraminifera at NE Atlantic DSDP Site 550: assemblage        
turnover across hyperthermal events 

INTRODUCTION 

A long term global warming trend was registered during the 

early Paleogene, and peaked with the Early Eocene Climatic 

Optimum (Miller et al., 1987a; Zachos et al., 2001). This 

trend was punctuated by several short and extreme warming 

events called hyperthermals (Thomas & Zachos, 2000). 

These events have been associated with the repeated emis-

sion of large masses of 13C-depleted carbon into the ocean-

atmosphere system, reflected in the sedimentary record as 

negative carbon isotope excursions (CIEs) (Cramer et al., 

2003). Additionally, the hyperthermal events were also 

characterised by increased CaCO3 dissolution in oceans 

(reflecting an increase in ocean acidification), perturbations 

of the hydrological cycle and increased continental erosion 

(e.g., Zachos et al., 2005; Nicolo et al., 2007; Leon-

Rodriguez & Dickens, 2010; Stap et al., 2010).  

Severe faunal changes in land and oceans occurred during 

the Paleocene-Eocene Thermal Maximum (PETM, 55.5 

Ma), the most severe of these events. Among the marine 

biota, the deep-sea benthic foraminifera suffered their major 

extinction of the Cenozoic, disappearing between the 35-

55% of the species (e.g., Tjalsma & Lohmann, 1983; Miller 

et al., 1987b; Katz & Miller, 1991; Thomas, 2007; Alegret 

et al., 2009a, b). According to Thomas (1998), postextinc-
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tion faunas were dominated by thin-walled calcareous or 

agglutinated taxa. The increase in abundance of agglutinat-

ed taxa has been registered in several sites across the PETM 

(e.g., Alegret et al., 2009a, b; Giusberti et al., 2009). Thus, 

increased CaCO3 dissolution has been proposed as the main 

cause of the benthic foraminiferal extinction (Thomas, 

2012). Nonetheless since the extinction was global, the 

cause should be global too, and there are some regions 

where the percentage of CaCO3 not decreased or even in-

creased, hence Alegret et al. (2010) suggest that ocean acid-

ification was not the only cause of the extinction. In these 

sense, dissolution experiments carried on agglutinated ben-

thic foraminifera has been demonstrated that even some 

species resistant to dissolution, became extinct during the 

PETM; so indeed, in addition to ocean acidification (i.e. 

carbonate dissolution), the interaction of other factors may 

contribute to the perturbation of benthic foraminifera 

(Arreguín-Rodríguez & Alegret, 2015). 

Unlike the PETM, quantitative studies analysing the benthic 

foraminiferal response to smaller hyperthermal events has 

been less developed. These few studies has registered a low 

abundance of agglutinated taxa (D’haenens et al., 2012; 

Arreguín-Rodríguez et al., 2016; Arreguín-Rodríguez & 
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Alegret, 2016), and consequently their reaction to less in-

tense hyperthermals is not known. Therefore, we present the 

evolution of the agglutinated taxa at DSDP Site 550 (NE 

Atlantic Ocean) during the early Eocene and across smaller 

hyperthermal events such as the ETM2 and H2.    

STUDY MATERIAL 

The early Eocene sediments from the Deep Sea Drilling 

Program Site 550, located in the northeast Atlantic Ocean 

(48°30.91´N, 13°26.37´W, ~43.72°N palaeolatitude; McIn-

erney & Wing, 2011) (Figure 1), consist of brownish and 

grayish marly nannofossil chalk. The studied interval com-

prise 7.87 m thick of Core 29-R (363.95 – 356.08 mbsf), 

where three hyperthermal events have been documented, the 

ETM2, H2 and I1. These events were recognised by D’hae-

nens et al. (2014) based on the record of negative CIEs, 

coinciding with a decrease in percentage of CaCO3.  

The total benthic foraminiferal assemblage across this inter-

val has been already documented by Arreguín-Rodríguez & 

Alegret (2016). In such study, the authors described assem-

blages moderately diverse and strongly dominated by cal-

careous taxa, with a mixed of infaunal and epifaunal mor-

phogroups. Among infaunal taxa, the most abundant species 

are Bolivinoides decoratus, Quadrimorphina profunda, Glo-

bocassidulina subglobosa and Oridorsalis umbonatus, 

while Nuttallides truempyi, Osangularia sp. 1 and Gyroidi-

noides depressus are the most abundant epifaunal species. 

Agglutinated taxa represent less than 5% of the total assem-

blage composition throughout the studied interval, and they 

make up to 8-10 % of the assemblages in coincidence with 

the ETM2 and H2 events, coinciding with very low %

CaCO3 values (Figure 2).  

Since the total benthic foraminiferal assemblage during the 

early Eocene at DSDP Site 550 are dominated by calcareous 

taxa, it is necessary to evaluate the agglutinated fraction 

separately in order to understand how they reacted to the 

ETM2 and H2. The I1 event is not considered in this study 

due to the low sampling resolution across it, and because its 

recovery interval is not represented in our study interval.  

METHODS 

A total of 44 samples were studied from the Core 550-29R. 

Samples were soaked in water with detergent and washed 

over a 63 µm sieve. Approximately 300 benthic foraminif-

era specimens were picked from the >63 µm residues in 

each sample, although two of them, 550-29-5, 72-74 cm 

(362.72 mbsf) and 550-29-5, 85-87cm (362.85 mbsf), had 

insufficient specimens (<50 specimens), and correspond to 

an interval of severe carbonate dissolution across the ETM2 

(D’haenens et al., 2014).  

The picked specimens correspond to 147 species including 

calcareous and agglutinated taxa, but only 18 are agglutinat-

ed species. Thus, the percentages of relative abundances 

were recalculated excluding the calcareous taxa (Figures 2-

4), and absolute abundances were also calculated, based on 

the number of agglutinated benthic foraminifera per gram of 

bulk sediment (ABF/g).   

RESULTS 

Repmanina charoides is the most abundant agglutinated 

species, and makes up more than 40% of the agglutinated 

assemblage. Other abundant taxa include Rhizammina spp. 

Figure 1. Palaeogeographic reconstruction (~53 Ma) showing the location of the DSDP Site 550. Modified from Hay et al. (1999).  
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Figure 2. Cumulative plot of % agglutinated species, and absolute abundance of agglutinated taxa (number of specimens per gram of 

bulk sediment) across the studied interval at DSDP Site 550. Dark grey areas indicate the core of the ETM2 and H2 events. Percent-

age of CaCO3 data from D'haenens et al. (2014)  
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(>14%) and Ammobaculites sp. (>12%). Arenobulimina sp., 

Glomospira sp., Glomospirella sp. and Karreriella bradyi 

are common species (Figure 3).  

A peak in relative and absolute abundance of agglutinated 

taxa (number of agglutinated foraminifera per gram of bulk 

sediment, ABF/g) is recorded towards the upper part of 

ETM2, coinciding with CaCO3 values of 0% (Figure 2). 

Agglutinated species make up ~8% of the total (calcareous 

+ agglutinated) assemblage, and their absolute abundance is 

> 3500 specimens per gram of bulk sediment. The increase 

in relative abundance of agglutinated taxa across the ETM2 

interval mainly consists of increased percentages of R. 

charoides, Glomospira sp., Glomospirella sp. and Am-

modiscus cf. latus (Figures 2 and 4), and species like Glo-

mospira sp., Glomospirella sp., Rhizammina spp. and R. 

charoides also shown absolute peaks of abundance during 

the ETM2 (Figure 4).  

Foraminifera are scarce at the interval with insufficient 

specimens (i.e., samples located within the core of ETM2 

with less than 50 specimens each one), and are not consid-

ered as representatives. However, agglutinated taxa slightly 

dominate the entire assemblage over the calcareous taxa in 

these two samples (>51% and 58%). At this interval, R. 

charoides, Rhizammina sp., Glomospira sp., Glomospirella 

sp. and Ammodiscus sp. are the most abundant species.   

Higher up in the core, a second peak in relative abundance 

of agglutinated taxa is recorded across the H2 event, where 

they represent ~10% of the total assemblage. This peak 

mainly consists of increased percentages of R. charoides, 

Glomospira sp. and Rhizammina spp. (Figures 2 and 4), and 

it occurred across an interval where the %CaCO3 content 

dropped down to ~11%. These same species integrate the 

absolute abundance peak during the H2 event (Figure 4).  

INTERPRETATION 

Some of the most abundant species across the studied inter-

val and particularly during the hyperthermal events at 

DSDP Site 550 are R. charoides, Glomospira sp. and Glo-

mospirella sp. These species have been included into the 

“Glomospira group”, which proliferation has been related 

with perturbed ecosystems during the Cretaceous and Paleo-

gene (e.g., Kuhnt & Kaminski, 1989; Kuhnt et al., 1989; 

Kaminski et al., 1992). Due to the fact that this group of 

species bloomed at many global sites during the widespread 

rise of the carbonate compensation depth related to the 

PETM and that they have non-calcareous test, it has been 

suggested that the increased abundance of these species is a 

result of the dissolution of calcareous taxa (Galeotti et al., 

2004; Kaminski & Gradstein, 2005). But recent studies sug-

gest that this bloom seems to be related with increased in-

flux of refractory organic matter, which may represent an 

alternative food source (Arreguín-Rodríguez et al., 2013, 

2014). According to Arreguín-Rodríguez & Alegret (2016), 

the benthic foraminiferal assemblages (including both cal-

careous and agglutinated taxa) indicate a decline in effective 

food supply to the seafloor and increase in carbonate corro-

sivity during both hyperthermal events (ETM2 and H2); 

however, during the H2 some opportunistic species (like 

Globocassidulina subglobosa and Osangularia sp. 1) peak 

in abundance suggesting pulsed food inputs thru this event. 

Therefore, it may be possible that such pulses of food gave 

an advantage to the species of the Glomospira group (over 

other agglutinated taxa), and thus the relative abundance 

peaks of these species are higher during the H2 than during 

the ETM2. On the other hand, the markedly dominance of 

this group, respect to the agglutinated assemblage, across 

the studied interval, but mostly at intervals close to hyper-

thermal events, may be related with the opportunistic and/or 

disaster behavior of these species, reflecting the perturba-

tion of the ecosystem.  

In spite of the proximity between the studied site (DSDP 

Site 550) and DSDP Site 401, the composition of the agglu-

tinated assemblages across the hyperthemal events is differ-

ent. D’haenens et al. (2012) reported scarce agglutinated 

taxa represented by species like Eggerella sp., Karrierella 

Figure 3. Species composition of agglutinated assemblages at 

DSDP Site 550. Average percentages of taxa show their rela-

tive abundance within the agglutinated assemblages only.  
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sp., Spiroplectammina spectabilis and Vulvulina mexicana 

across an interval that includes the ETM2 (which they 

called it level δ), and no changes in their abundance during 

the event are mentioned. Additionally, other studies of ben-

thic foraminiferal during early Eocene hyperthermals do not 

include quantitative analysis, therefore we are not able to 

compare our agglutinated assemblage with other locations, 

in order to evaluate if the composition and changes reported 

in our study is a common feature during these hyperther-

mals, or if the response of the agglutinated taxa at this site is 

controlled by local conditions.  

CONCLUSIONS 

Agglutinated benthic foraminifera are not abundant com-

pared with calcareous taxa at DSDP Site 550 during the 

early Eocene. However, they show a slight increase in abun-

dance across the ETM2 and H2 events.  

The most abundant taxa of the agglutinated assemblage is R. 

charoides, and other species from the Glomospira group are 

are also common across the studied interval, and these same 

species mostly composed the abundance peaks during both 

hyperthermal events. Therefore, the dominance of these 

species probably reflects the opportunistic and/or disaster 

behavior of these taxa under perturbed environments.  
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Plate 1. Scanning electron micrographs of early Eocene agglutinated benthic foraminiferal species at DSDP Site 550. All scale-bars rep-
resent 100 µm. 1, Ammodiscus cf. latus (sample 550-29-5, 65-67 cm, depth 362.65 mbsf); 2, Ammodiscus sp. (sample 550-29-4, 75-77 
cm, depth 361.25 mbsf); 3, Recurvoides sp. 1 (sample 550-29-5, 65-67 cm, depth 362.65 mbsf); 4, Repmanina charoides (sample 550-29-
5, 85-87 cm, 362.85 mbsf); 5, Glomospira sp. (sample 550-29-4, 85-87 cm, depth 361.35 mbsf); 6, Glomospirella sp. (sample 550-29-5, 
105-107 cm, depth 363.05 mbsf); 7, Arenobulimina sp. (sample 550-29-4, 5-7 cm, depth 360.55 mbsf); 8, Recurvoides sp. 2 (sample 550-
29-5, 65-67 cm, depth 362.65 mbsf); 9, Remessella varians (sample 550-29-6, 61-63 cm, depth 363.95 mbsf); 10, Ammobaculites sp. 
(sample 550-29-4, 35-37 cm, depth 360.85 mbsf); 11, Gaudryina sp. (sample 550-29-4, 65-67 cm, depth 361.15 mbsf); 12, Gaudryina 
pyramidata (sample 550-29-6, 2-4 cm, depth 363.36 mbsf); 13, Karreriella bradyi (sample 550-29-4, 135-137 cm, depth 361.85 mbsf); 
14, Karreriella subglabra (sample 550-29-3, 10-12 cm, depth 359.10 mbsf); 15, Spiroplectammina sp. (sample 550-29-2, 53-55 cm, 
depth 358.03 mbsf); 16, Spiroplectammina spectabilis (sample 550-29-4, 135-137 cm, depth 361.85 mbsf); 17, Bathysiphon sp. (sample 
550-29-4, 75-77 cm, depth 361.25 mbsf); 18, Rhizammina spp. (sample 550-29-1, 110-112 cm, depth 357.10 mbsf); 19, Rhizammina spp. 
(sample 550-29-1, 110-112 cm, depth 357.10 mbsf).  


